diff options
| author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-10-10 18:04:50 +0200 |
|---|---|---|
| committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-10-10 18:04:50 +0200 |
| commit | 8291a87c64f9a5f18caec82201bea15579b49730 (patch) | |
| tree | 1c8bb3e07a3bd06086e182dd320f8408829ba81c /text_recognizer/data/transforms.py | |
| parent | 30e3ae483c846418b04ed48f014a4af2cf9a0771 (diff) | |
Move data utils to submodules
Diffstat (limited to 'text_recognizer/data/transforms.py')
| -rw-r--r-- | text_recognizer/data/transforms.py | 49 |
1 files changed, 0 insertions, 49 deletions
diff --git a/text_recognizer/data/transforms.py b/text_recognizer/data/transforms.py deleted file mode 100644 index 7f3e0d1..0000000 --- a/text_recognizer/data/transforms.py +++ /dev/null @@ -1,49 +0,0 @@ -"""Transforms for PyTorch datasets.""" -from pathlib import Path -from typing import Optional, Union, Type, Set - -import torch -from torch import Tensor - -from text_recognizer.data.base_mapping import AbstractMapping -from text_recognizer.data.word_piece_mapping import WordPieceMapping - - -class WordPiece: - """Converts EMNIST indices to Word Piece indices.""" - - def __init__( - self, - num_features: int = 1000, - tokens: str = "iamdb_1kwp_tokens_1000.txt", - lexicon: str = "iamdb_1kwp_lex_1000.txt", - data_dir: Optional[Union[str, Path]] = None, - use_words: bool = False, - prepend_wordsep: bool = False, - special_tokens: Set[str] = {"<s>", "<e>", "<p>"}, - extra_symbols: Optional[Set[str]] = {"\n",}, - max_len: int = 451, - ) -> None: - self.mapping = WordPieceMapping( - data_dir=data_dir, - num_features=num_features, - tokens=tokens, - lexicon=lexicon, - use_words=use_words, - prepend_wordsep=prepend_wordsep, - special_tokens=special_tokens, - extra_symbols=extra_symbols, - ) - self.max_len = max_len - - def __call__(self, x: Tensor) -> Tensor: - """Converts Emnist target tensor to Word piece target tensor.""" - y = self.mapping.emnist_to_wordpiece_indices(x) - if len(y) < self.max_len: - pad_len = self.max_len - len(y) - y = torch.cat( - (y, torch.LongTensor([self.mapping.get_index("<p>")] * pad_len)) - ) - else: - y = y[: self.max_len] - return y |