diff options
Diffstat (limited to 'text_recognizer/networks/transformer/embeddings/rotary.py')
| -rw-r--r-- | text_recognizer/networks/transformer/embeddings/rotary.py | 42 |
1 files changed, 42 insertions, 0 deletions
diff --git a/text_recognizer/networks/transformer/embeddings/rotary.py b/text_recognizer/networks/transformer/embeddings/rotary.py new file mode 100644 index 0000000..2f58964 --- /dev/null +++ b/text_recognizer/networks/transformer/embeddings/rotary.py @@ -0,0 +1,42 @@ +"""Roatary embedding. + +Stolen from lucidrains: + https://github.com/lucidrains/rotary-embedding-torch + +Explanation of roatary: + https://blog.eleuther.ai/rotary-embeddings/ +""" +from typing import Tuple + +from einops import rearrange +import torch +from torch import nn +from torch import Tensor + + +class RotaryEmbedding(nn.Module): + """Rotary positional embedding.""" + + def __init__(self, dim: int): + super().__init__() + inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) + self.register_buffer("inv_freq", inv_freq) + + def forward(self, x: Tensor, seq_dim: int = 1) -> Tensor: + """Encodes tensor x with rotary embeddings.""" + t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + freqs = torch.einsum("i , j -> i j", t, self.inv_freq) + emb = torch.cat((freqs, freqs), dim=-1) + return rearrange(emb, "n d -> () () n d") + + +def rotate_half(x: Tensor) -> Tensor: + x = rearrange(x, "... (j d) -> ... j d", j=2) + x1, x2 = x.unbind(dim=-2) + return torch.cat((-x2, x1), dim=-1) + + +def apply_rotary_pos_emb(t: Tensor, freqs: Tensor) -> Tensor: + seq_len = t.shape[-2] + freqs = freqs[:, :, -seq_len:] + return (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) |